Search results for "Indistinguishable particle"

showing 3 items of 3 documents

Proof-of-Principle Direct Measurement of Particle Statistical Phase

2022

The symmetrization postulate in quantum mechanics is formally reflected in the appearance of an exchange phase governing the symmetry of identical-particle global states under particle swapping. Many indirect measurements of this fundamental phase have been reported thus far, but a direct observation has been achieved only recently for photons. Here, we propose a general scheme capable of directly measuring the exchange phase of any type of particle (bosons, fermions, or anyons), exploiting the operational framework of spatially localized operations and classical communication. We experimentally implement it on an all-optical platform, providing a proof of principle for different simulated …

Quantum PhotonicsIndistinguishable particleGeneral Physics and AstronomyExchange PhaseSettore FIS/03 - Fisica Della MateriaPhysical Review Applied
researchProduct

Indistinguishability-enhanced entanglement recovery by spatially localized operations and classical communication

2021

We extend a procedure exploiting spatial indistinguishability of identical particles to recover the spoiled entanglement between two qubits interacting with Markovian noisy environments. Here, the spatially localized operations and classical communication (sLOCC) operational framework is used to activate the entanglement restoration from the indistinguishable constituents. We consider the realistic scenario where noise acts for the whole duration of the process. Three standard types of noises are considered: a phase damping, a depolarizing, and an amplitude damping channel. Within this general scenario, we find the entanglement to be restored in an amount proportional to the degree of spati…

Statistics and ProbabilityQuantum Physicsopen quantum systementanglement protectionIndistinguishable particlequantum resourcesFOS: Physical sciencesStatistical and Nonlinear PhysicsQuantum Physics (quant-ph)Settore FIS/03 - Fisica Della MateriaMathematical Physics
researchProduct

Entanglement robustness via spatial deformation of identical particle wave functions

2021

We address the problem of entanglement protection against surrounding noise by a procedure suitably exploiting spatial indistinguishability of identical subsystems. To this purpose, we take two initially separated and entangled identical qubits interacting with two independent noisy environments. Three typical models of environments are considered: amplitude damping channel, phase damping channel and depolarizing channel. After the interaction, we deform the wave functions of the two qubits to make them spatially overlap before performing spatially localized operations and classical communication (sLOCC) and eventually computing the entanglement of the resulting state. This way, we show tha…

ScienceQC1-999Entanglement protection Indistinguishable particles Open quantum systemsFOS: Physical sciencesGeneral Physics and AstronomyQuantum entanglementAstrophysics01 natural sciencesNoise (electronics)Settore ING-INF/01 - ElettronicaArticleSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasWave–particle dualityRobustness (computer science)0103 physical sciencesStatistical physics010306 general physicsAmplitude damping channelQuantumPhysicsQuantum Physicsentanglement protectionPhysicsQindistinguishable particlesopen quantum systemsQuantum PhysicsQB460-466QubitQuantum Physics (quant-ph)Communication channel
researchProduct